

ACE Green technology:

Yes, it can be done! Modular hydromet lead recycling – and lithium too

Farid Ahmed | ACE Green Recycling

RECYCLE100 | Borneo | September 2025

Global electrification is impossible without sustainable battery materials

First, the bit about lead recycling

Lead battery recycling

An established market still offering growth

Huge and increasing lead battery market

\$75 bn

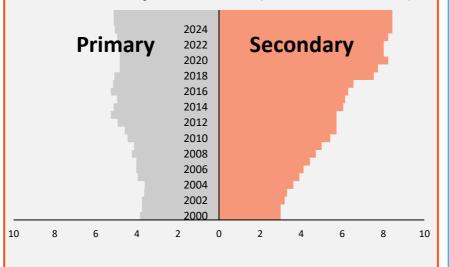
Lead battery market size

Growing end-market demand

Telecom towers

Source: ACE internal assessments

Uninterruptible Power Supply (UPS)



Transport & automotive

Recycling supplies 65% of the global lead

- ☑ Established collection infrastructures and supply chain
- ✓ Negligible growth in primary mine output

Global lead production (million tonnes)

Traditional smelters: how sustainable in the long term?

Emissions to air

Pollutants to water

Solid waste

Higher energy demands

Less safe working environment

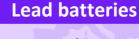
*

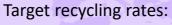
Significant headwinds from tightening regulations

Changes will drive increasingly localised battery processing

Lead batteries

Target > 95% recovery rate for lead batteries



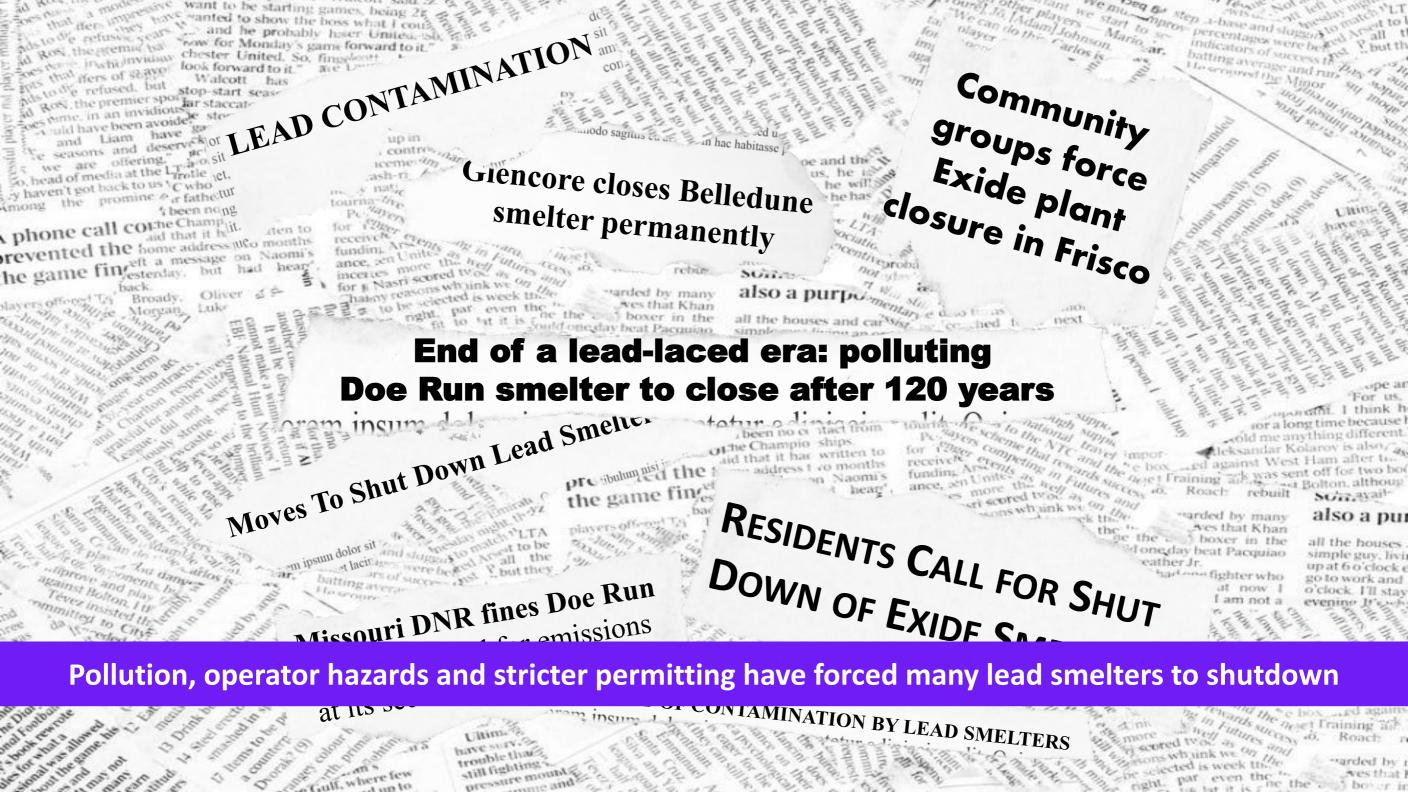

Californian and New York require retailers to accept and recycle customer returns

- Portable **63**% by 2027; **73**% by 2031;
- Light Means of Transport -**51%** by 2027; **61%** by 2031

Approaching 100% of automotive batteries recovered

Lead batteries

Target to collect > 50% of waste lead batteries in pilot areas


Enhanced management

system for lead battery collection; incorporation of solid waste management

GREENLEAD® technology revitalising lead recycling Efficient, safer, greener – and with better costs

		GREENLEAD® recycling technology	Traditional smelting
		ACE Green Recycling	
Energy	Energy requirement	Low	High
	Renewable power	Yes	No
Operation	Operating environment	Room temperature	> 1000 °C
	Modular	Yes	No
	Health & safety risks	Close to nil	Elevated
Environmental impact	GHG Emission	Zero	500-1000 kg per tonne of batteries
	Oxygen release	45 kg per tonne of batteries	None
	Toxic waste creation	Very low volume	Higher volume
%	Lead metal recovery %	> 99%	95-98%

ACE Green Recycling – a global leader in sustainable battery recycling

Compelling environmental & economic advantages

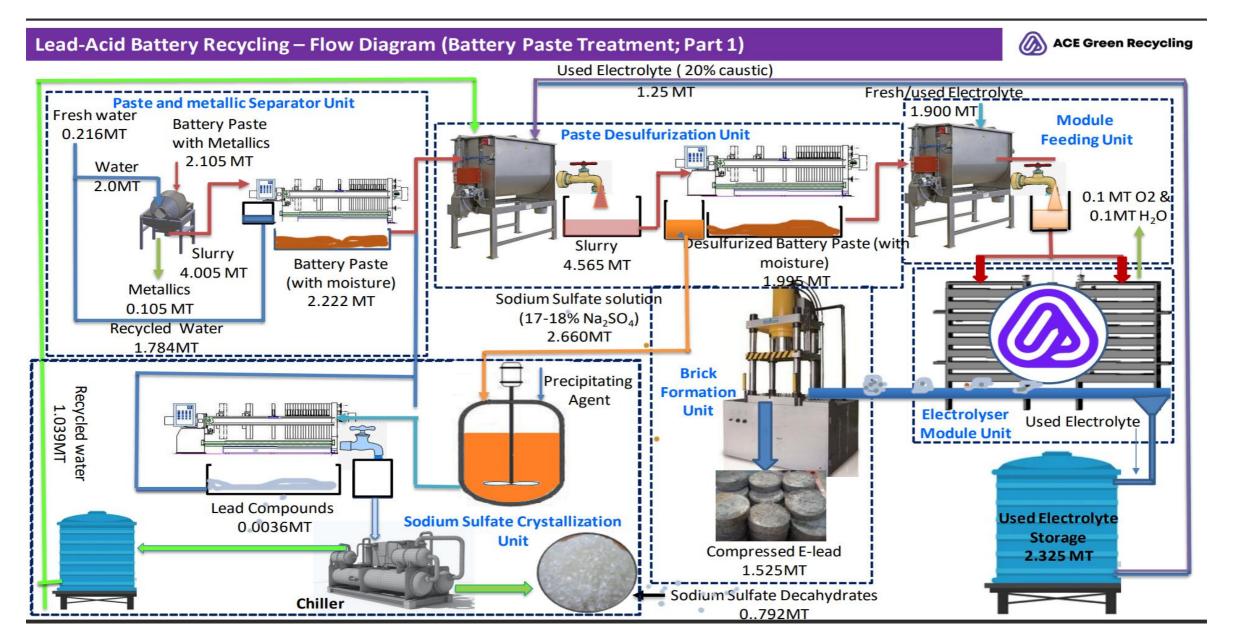
- Strong environmental credentials support future regulations
- Zero Scope 1 carbon emissions, zero toxic waste

Proven commercial technology

- Enables domestic supply chain and retention of critical metals
- Superior recovery rates over 99% lead recovery
- IP portfolio with over 100 patent filings

Supportive political & economic tailwinds

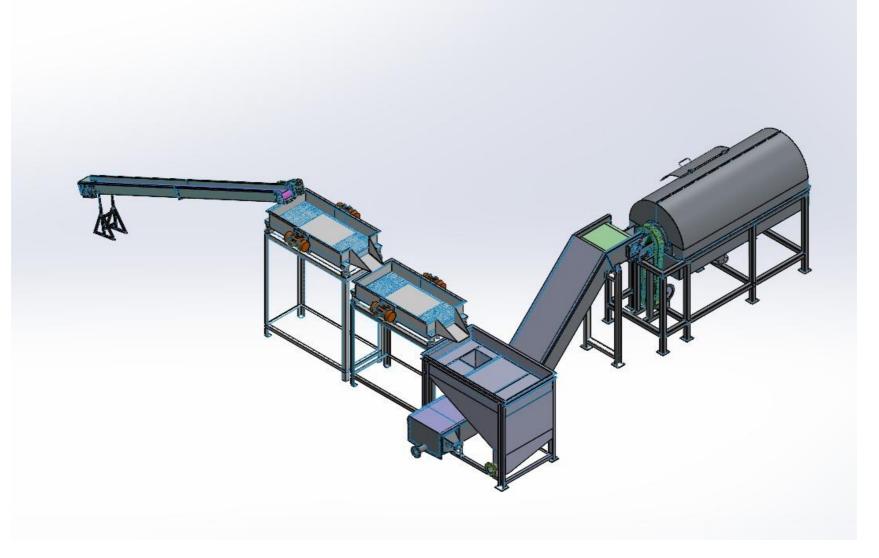
- National security, economics and sustainability are driving onshoring of battery production
- Aligns with focus on prioritising domestic supply chains and manufacturing



The ACE technology

Successfully commercialised sustainable lead recycling

ACE is quietly transforming how lead is recycled


ACE electrolyser modules

ACE technology deployment

The ACE metallics cleaning process

Straight from breaker to alloying kettle – no furnace, no loss of antimony

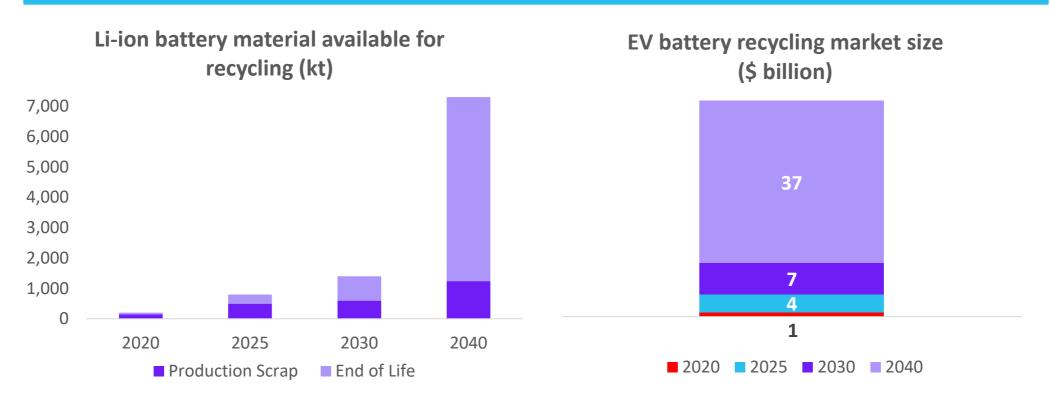
ACE metallics cleaning process

The ACE metallics cleaning process

Paste and residual plastics removed from metallics

Dirty metallics ex-breaker

Clean metallics ex-ACE process


Recovered plastic ex-ACE process

Next, the bit about lithium-ion recycling

A spectrum of battery chemistries Diverse uses will require the right battery for the right application

Lithium-ion battery recycling market by 2040² \$37 billion

- Battery chemistries will differ by application (ESS, EV, personal devices) and by market.
- Cheaper lead and LFP will be preferred over more expensive NMC for an increasing proportion of applications.

Sustainable Li-ion recycling is economically and ecologically essential

EV sales will exceed 50% by 2030

Challenge 1

Growth of battery waste

Challenge 2

Existing waste management ineffective and unsustainable

Smelting

- High air pollution
- Toxic solid waste
- Hazardous work environment

Waste disposal

- Toxic liquids, solids and air pollution
- Explosion hazards during transportation and shredding

Challenge 3

Increasing constraints impact battery raw materials sourcing

High environmental impact from mining and refining

Need for supply chain localisation

Expected mining supply shortages

Requirement for supply chain transparency

Comparing ACE tech with conventional processes

		ACE Lithium technology	Pyrometallurgy	Standard hydromet process (solvent extraction)
		ACE Green Recycling		
SI	Minimum viable plant size	5,000 tonnes/year	50,000+ tonnes/year	20,000+ tonnes/year
	NMC battery recycling	Yes	Yes	Yes
Operations	LFP battery recycling	Yes	No	Emerging
	Lithium recovery	75%*	None	30-75%
	Graphite recovery	Yes	None	Yes
	Output flexibility	Yes	No (metal only)	No
Environmental impact	Scope 1 carbon emissions	None	High	High
ironme	Solid waste generation	None	High	Medium
Envii	Liquid effluents	None	Low	High
Planning efficiency	Intellectual property defensibility	High	Very low	Very low
	Relative energy requirements	Low	High	Low
	Long-term ease of permitting	High	Low (landfilling & emissions)	Low (liquid effluents)


LithiumFirst[™] – chemistry agnostic processes for LFP, NMC, LCO,...

Proven technology recycling small & large format Li-ion batteries

ACE's proprietary battery discharging technology is safer and environmentally friendly

Step 1: Safe storage & discharging

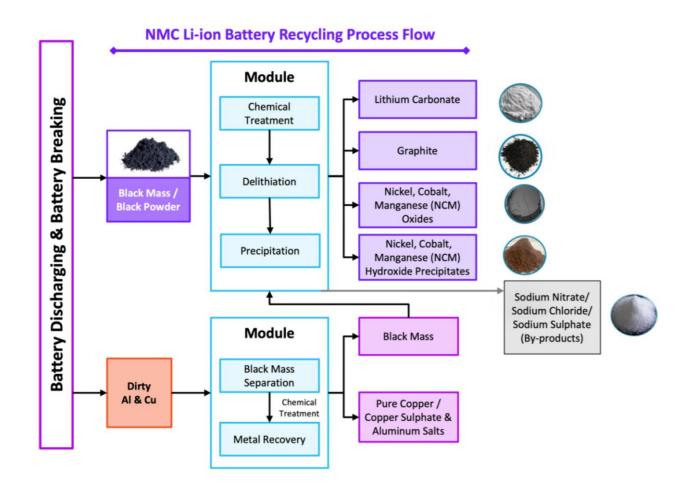
Proprietary Al/Cu cleaning gives greater black mass recovery; upgrades Cu and Al to valuable by-products

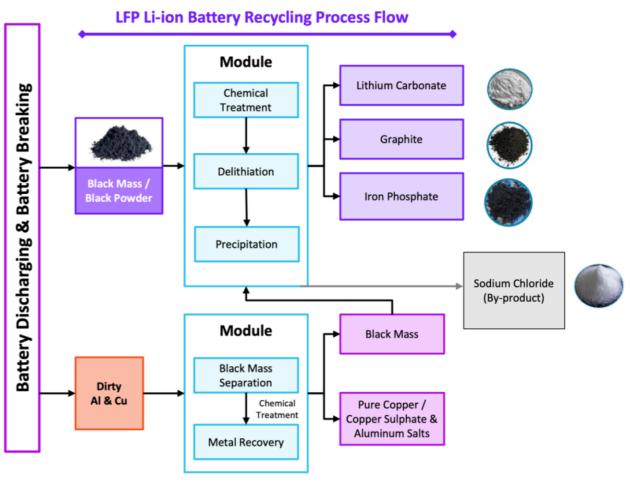
ACE's technology **recovers Lithium carbonate**; produces
Mixed Hydroxide Precipitates
(MHP), Mixed Metal Oxides
(MMO) and graphite

Step 3: Lithium extraction

Step 4: Technical & battery grade salts

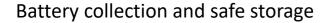
Technical grade material from ACE's hydrometallurgical process; battery grade salts through standardised purification


Commercial operations are in place for Steps 1-3, with phased capacity scaled up



Step 4 capability developed to pre-pilot stage, ready for scale-up

ACE Green's Li-ion recycling processes



First ACE Li-ion facility started operation in April 2023

Pre-processing operations

Chemical and electrical discharging

Battery breaking, black mass production, AI/Cu fractions, polypropylene

Post-processing operations

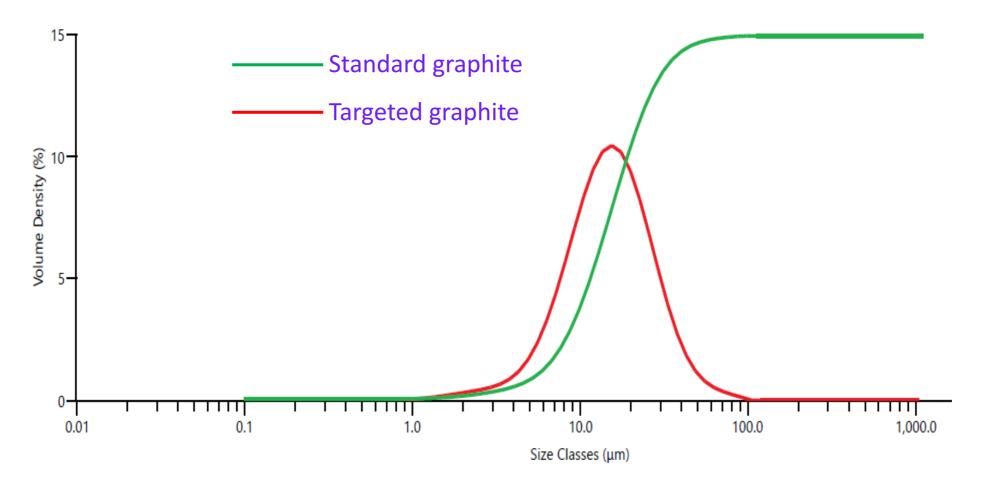
Al/Cu electrode material cleaning

Modular line for postprocessing of black mass

Modular line for product filtration

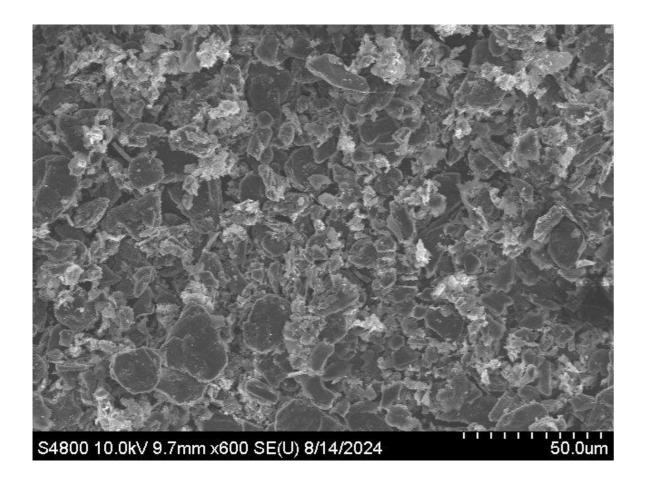
Hydro-processing plant

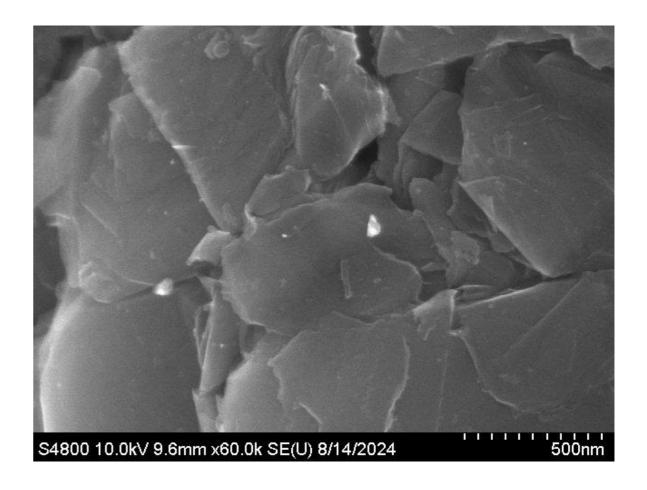
Graphite ICP-OES analysis


Impurities present in graphite

Element	ICP Reading	Final Conc. (in ppm)	Element Percent (%)
Al	0.023	512.20	0.05
Li	0.113	1902.44	0.19
Co	0.155	3756.10	0.38
Mn	0.011	243.90	0.02
Cu	0.012	-48.78	0.00
Fe	0.069	1634.15	0.16
Mg	0.042	1000.00	0.10
Ca	0.162	3902.44	0.39
Zn	0.004	0.00	0.00
Ni	0.011	268.29	0.03
Na	0.16	3756.10	0.38

Targeted graphite




Particle size distribution

Compared to standard graphite particle size distribution (D10 - $10\mu m$, D50 - $20\mu m$, D90 - $40\mu m$), targeted graphite (D10 - $6.6\mu m$, D50 - $14.8\mu m$, D90 - $30.8\mu m$) demonstrates a narrower distribution, indicating effective size control during processing and suitability for anode reuse.

SEM analysis of targeted graphite microstructure

- SEM images reveal a layered morphology and surface texture.
- High magnification shows well-defined edges and interlayer spacing, confirming structural integrity suitable for anode applications.

Legal Disclaimer

Legal Disclaimer

This presentation does not constitute an offer to the public or an offer for sale or solicitation to purchase or subscribe for any securities of Ace Green Recycling, Inc. (the "Company") and its subsidiaries and it should not be relied on in connection with a decision to purchase or subscribe for any such securities. No representation or warranty, express or implied, is given by or on behalf of the Company, its stockholders, directors, officers or employees or any other person as to the accuracy or completeness of the information or opinions contained in this presentation and any accompanying verbal presentation, and no liability is accepted for any such information or opinions.

Forward-looking Statements

Certain information set forth in this presentation constitutes forward-looking statements including, but not limited to: (i) projected financial performance of the Company, in particular, that the Company will be profitable by 2026 and its 5-year target revenue distribution; (ii) future expected sources of revenue growth; (iii) the expected development of the Company's business and projects, in particular its anticipated Texas facility including the anticipated timeline and outcomes thereof; and (v) the Company's anticipated future growth/expansion. Forward-looking statements reflect management's beliefs and opinions in respect of the future and are not guarantees of future performance, and undue reliance should not be placed on them. Such forward-looking statements necessarily involve known and unknown risks and uncertainties that may cause actual performance and financial results in future periods to differ materially from any projections of future performance or result expressed or implied by such forward-looking statements. The Company undertakes no obligation to update forward-looking statements if circumstances or management's estimates or opinions should change, except as required by applicable securities laws.

