Low Energy Desalination Options to Eliminate Sulfates from Discharge

Patrick Curran

Senior Partner

Archimedes Industrial Advisory & Investment

patrick@aiaigrp.com

Problem: Reduced sulfate discharge limits, permits

> 30% sulfates come from drained acid

About 1/3 of sulfates in discharge comes from neutralization of drained acid in flooded batteries. Less for AGM.

Neutralized acid is hypersaline

Typically the neutralized water or scrubber blowdown is > 60,000 ppm

Treat with caustic or ammonia

Whether treated with caustic or ammonia, a high salinity liquid is produced.

Stop neutralizing acid and solve > 30% of the problem!

Its not a technology problem

There are commercially available technologies that can clean and concentrate the acid.

It's a logistics problem

Need to find a home and match the process to the client specifications.

TECHNOLOGY READINESS LEVEL (TRL)

ENT	9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT							
DEPLOYMENT	8	SYSTEM COMPLETE AND QUALIFIED							
	7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT							
ENT	6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT							
RESEARCH DEVELOPMENT	5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT							
	4	TECHNOLOGY VALIDATED IN LAB							
	3	EXPERIMENTAL PROOF OF CONCEPT							
	2	TECHNOLOGY CONCEPT FORMULATED							
	1	BASIC PRINCIPLES OBSERVED							

Technology options to treat hypersaline discharge

- Mechanical Vapor Recompression with Crystallizer. TRL-9
- Ultra High-Pressure Reverse Osmosis. TRL-8
- Electro Hydrodynamic Evaporation. TRL-7
- > Cavitation. TRL 6

Mechanical Vapor Recompression with Crystallizer

- Most common technology set to treat hypersaline brine
- Produces clean water and dry salt (ZLD)
- MVR stage concentrates the brine, crystallizer drops out the salts
- > High capital costs \$375,000 per m3
- High energy usage 80 kWhr/m3
- High maintenance due to exotic alloys and moving parts
- High cost of ownership.

Ultra High-Pressure Reverse Osmosis

- Can treat up to 60,000 ppm inlet water
- Produces super brine and clean water
- MLD (minimal liquid discharge), requires additional processes to produce dry salts such as crystallizer
- > Low capital costs \$44,000 per m3 by itself
- Low energy usage 5 kWhr/m3 by itself
- Medium maintenance for membranes

Electro Hydrodynamic Evaporation

- Produces clean vapor and dry salt (ZLD)
- > Single stage process
- Medium capital costs \$54,000 per m3
- > Low energy usage 20 kWhr/m3
- Low maintenance due low pressure and few moving parts
- > Low cost of ownership

Hydrodynamic Cavitation

- Produces partially desalinated water plus dry salts
- Requires additional process such as UHPRO & MVR
- Low capital costs \$35,000 per m3
- > Low energy usage 4 kWhr/m3
- > Low maintenance due to simple pump and nozzle
- > Low cost of ownership

Normalized Cost of Ownership Comparison

	Additio					Cost of		
Technology	Process Needed		Energy JSD/m	Deprec USD/m3	Mainten (L/M/H)	Ownership (USD/m3)	WVR-Cryst comparison	
MVR Crystallizer	None		\$12.00	\$2.16	\$6.49	\$20.66		
Ultra High- Pressure RC	Crystalliz	er	\$6.75	\$1.59	\$4.77	\$12.74	-38.3%	+
Electro Hydrodynami Evaporation	None		\$3.00	\$0.89	\$1.78	\$5.67	-72.5%	-
Cavitation	UHPRO Crystalliz		\$3.56	\$1.00	\$3.00	\$7.56	-63.4%	+

Conclusions

Isolate acid & treat

This will reduce sulfates to be treated by at least 30%

High TRL Alternatives

There are high TRL options that can lower cost of ownership by up to 72%.

Patrick Curran

Senior Partner

Archimedes Industrial Advisory & Investment

patrick@aiaigrp.com

