

9TH INTERNATIONAL SECONDARY LEAD & BATTERY RECYCLING CONFERENCE 1 & 2 September 2025 Hilton Kota Kinabalu

Metallurgical Workshop Evolving Flowsheets in Lead-Acid and Lithium-ion Battery Recycling

dr. Sander Arnout, InsPyro, Belgium

Simulate. Quantify. Optimize.

Introduction: InsPyro

B2B consultancy company since 16 years (KU Leuven spin-off 2009 founded and run by PhD's)

Technology neutral, science-based industry support

- Process development & improvement through:
 - Modelling: Thermodynamics, Flowsheet, Fluid Dynamics (CFD)
 - Experiments & Characterization
 - Model and data software integration
 - Industrial experience & network
- Industries:
 - Recycling incl. batteries and residues
 - Non-ferrous metallurgy (pyro and hydro)
 - Steel, cast iron and ferro-alloys
- References: Ecobat, Recylex, Campine, Eramet etc.
- <u>www.inspyro.be</u>

2050 ready metallurgy

Theory

Metallurgical insight, diagrams and thermodynamics software

Simulate

METSIM Flowsheet model

Processes and equipment, plant mass and heat balance

Quantify

ProOpt Advisor

Bring data and models together for fast decisions

Optimize

Metallurgical basic toolset

Why do we use thermodynamics?

Materials change

Materials react

Thermodynamics tells us what to expect

Gibbs energy mathematical framework

 Thermodynamic equilibrium: theory tells us that systems evolve to the lowest Gibbs energy at constant T and P

 By modelling the Gibbs energy of compounds and solutions, we have a mathematical approach to compare their stability (which one is preferred in equilibrium)

- We can use diagrams such as the Ellingham diagram, to make things visually clear
- We can use software, by building on Gibbs energy descriptions (enthalpy+entropy of formation and Cp), e.g. FactSage, ThermoCalc...
- Rather than guessing we make consistent predictions but we can only predict what is known!

Goal: show some examples of useful literature diagrams for battery recycling flowsheets

Order of oxidation and reduction

THE ELLINGHAM DIAGRAM

Ellingham diagram: visualizing reactions

Gibbs free energy change for the formation of oxides

A metal M reacts with gaseous oxygen at a fixed temperature

$$M_{(s)} + O_{2(g)} \leftrightarrow MO_{2(s)}$$

This reactions has a standard Gibbs energy change: all components in standard state = pure

A low (very negative) ΔG means strong reaction to the right, i.e. a high equilibrium constant:

$$K = [MO2] / [M] pO2$$

Where [] indicates the activity ("concentration") of the component in case of a mixture (gas, slag,...)

By measuring pO_2 with pure metals/oxides, ΔG can be derived

Plotting standard reaction Gibbs energy

• Graphical view: $\Delta G^{\circ} = f(T)$

Visualization – Reactions

• Graphical view: $\Delta G^{\circ} = RT \ln(p_{O2})_{eq} = f(T)$

Ellingham diagram

Oxidation reactions

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$= RT \ln(pO_2)_{eq}$$

Always for reaction with 1 mole of O_2 Always for pure compounds

"Competition" for oxygen, compare stabilities of:

- Oxides from different metals
- Different oxidation states of single metal
 High T → metal oxides less stable

=> inspyro.be

Competition for oxygen

- $M_1, M_2, M_3 + O_2 => M_2O$
- Oxygen can only bind once, so it has to choose
- Metals that will win are the ones with:
 - Lowest DG°
 - Direct energy from forming oxide (~Electronegativity)
 - See Ellingham diagram
 - Lowest activity for oxide
 - A sink for the oxide, pulling it in the slag
 - Highest activity for metal
 - Pushing the metal out of the alloy

Lead metallurgy basics

Primary vs. secondary lead smelting

Primary

- Raw material: concentrates
 - Fine powder
 - Well-known composition
 - Blending
- Chemistry: Sulfides
 - Oxidize = Exothermic reaction

Secondary

- Batteries (etc.)
 - Different sizes
 - Seasonal fluctuations
 - Organics
- Metallic, oxides, sulfates
 - Reduce = Endothermic reaction

Ellingham diagram: lead smelting

Ellingham: oxidation preference

- Lead is relatively noble
- In the lead smelting range:
 - Fe could be FeO or Fe₃O₄
 - Sb, Sn, Ni can be oxidized
 - S can be oxidized
 - Bi, Cu, Ag stay metallic
 - C can reduce all of the above
 - Typical slag elements Si, Al, Ca, etc. definitely oxidized
- This is a rough approach, as dilution may influence the result
 - E.g. Sb diluted in Pb: not possible to oxidize all Sb without oxidizing some Pb
 - E.g. Pb in slag: thermodynamic equilibrium concentration of PbO is never 0

Predominance diagrams

- Ellingham gives a good idea about what oxidizes first
- When sulfur comes into play, elements can choose between
 - Metallic form
 - Oxide form
 - Sulfide form
 - Sulfate form

=> Need a different diagram to understand what happens in which condition

Lead predominance diagram

- Sulfate very stable at low T
 - SO₂ to gas phase upon heating in air
- Classical sintering
- Direct smelting
- Recycling

Different challenges!

Graph D. Swinbourne, RMIT

Lead predominance diagram

- S challenge in lead recycling:
 - Oxidizing atmosphere: make PbO and SO₂
 - Reducing atmosphere: make PbS
- This diagram is too simple, with pure compounds only...

Graph D. Swinbourne, RMIT

Yazawa diagram for Pb

pO₂-pS₂ diagram with solutions

- Pb-PbS continuous (bullion-matte) More PbO in slag (silicate or soda
- Choose high PbO or high PbS!

Metallurgical strategies:

- Remove SO₂ first, then reduce PbO to Pb
 - Paste desulfurization (pre-de-S)
 - Roasting/dissociation in furnace (post de-S)
- Reduce to PbS, then make Pb using a sulfur capturing flux, Fe or Na₂CO₃

Graph D. Swinbourne, RMIT

Fluxing making the system quite complex...

- S captured in slag => FeS, Na₂S, formation
 - Slags with a lot of S should rather be called mattes!
- When not reducing well, also FeO, Fe₃O₄, or Na₂SO₄ forms
 - FeO and Na₂SO₄ dissolve well in sulfide system, Fe₃O₄ not
- Other elements such as SiO₂ and CaO present
 - SiO₂ does not like sulfides so may lead to a slag-matte separation

Some relevant diagrams for matte/slag...

35.5b Fe-O-S Isothermal Section at 1100°C in Weight Percent

N. Kopylov, the Cu₂S-FeS-Na₂S system, 1964

Lead hydro – E-pH diagram

E-pH or Pourbaix diagram: showing the stable phases/ions in aqueous conditions

Redox equilibrium

- The standard electrode potential of a reaction is written as E⁰
 - Metal $^{z+}$ + $z e^- \leftarrow \rightarrow$ Metal $E^0 = ... V$
- Standard conditions:
 - 1 atm
 - 25°C
 - a=1
- Can be calculated from/to thermodynamics: Gibbs energy

$$E^0 = \frac{-\Delta G}{zF}$$

- ΔG = Gibbs free energy change
- \circ z = number of electrons
- F = 98485 Coulomb/mol (Faraday constant)
- Spontaneous reaction if DG<0 => if E>0
 - Relevant for two combined half reactions

Ellingham diagram: p_{O2} indicator of DG Pourbaix diagram: E° indicator of DG

Redox potential

More noble (mostly as metal) Low DG

Metal/metal ion E⁰ vs. H₂/H⁺ [V equilibrium Au/Au3+ +1.498 Pt/Pt2+ +1.2 Pd/Pd2+ +0.987 Ag/Ag+ +0.799 Hg/Hg²⁺ +0.788 Cu/Cu²⁺ +0.337 H₂/H+ 0.000Pb/Pb2+ -0.126Sn/Sn2+ -0.136Ni/Ni2+ -0.250Co/Co2+ -0.277Fe/Fe2+ -0.440Cr/Cr2+ -0.744Zn/Zn2+ -0.763AI/AI3+ -1.662Mg/Mg²⁺ -2.363Na/Na+ -2.714K/K+ -2.925

Less noble (Mostly as oxide/salt) High negative DG

Dissolved metal conc. 1M

Competition for giving away electrons! Most base metals >Pb

Lead E-pH diagram

- Pb sulfate very stable: cannot be dissolved in common conditions
- Need to remove sulfate and replace with another anion

Pb desulfurization:

- Bring SO₄ into solution,
 e.g. Na₂SO₄
- Pb stays solid as PbCO₃
 or Pb(OH)₂

Pb leaching needs a next step at lower pH

Lead recycling routes

Simulate. Quantify. Optimize.

Lead hydro – Getting lead out of the solution

Electrowinning

- Product depends on the medium
- Fluoroboric acid (Betts): High purity plating
- Ammonium chloride: metal flakes
- MSA, alkaline processes: spongy metal

Precipitation

- Precipitate depends on the solute (direct use as powder?)
- Use of organic acids (citric acid, acetic acid): precipitates can be calcined to PbO
- "Hydro process without acid recovery is not circular"

New ideas:

- Solid paste reduction (avoid leaching spongy)
- Two-chamber electrolysis (separated by membrane)

The Twelve Principles of Circular Hydrometallurgy, K. Binnemans, P.T. Jones, 2023 https://doi.org/10.1007/s40831-022-00636-3

Pyro – Hydro

Pyro good at:

- Making a useful alloy with few steps
- Robust towards impurities
- Get rid of organics, shapes, mixes
- Typically, slag as "single" outlet (but challenges with Pb and variable matte/slag system)

Hydro good at:

- Making a very pure metal (Betts refining)
- Low dust levels
- Removing S from paste, solutions and gases
- Typically, selectivity (but for lead, limited options for selective leaching)
- Typically, precipitating and crystallizing pure products (salts, hydroxides)
- Typically, good combination with electrification (=> reagent recovery) will we see an electrolysis solution for Pb?
- All starts with good mechanical separation
- Combine technology to use their strengths

Next frontiers

Zero waste

- Pyro: slag and/or filter dust as the waste bucket... But not a useful outlet
 - Efforts to fume out Pb and Zn and reach a building quality slag but hard
 - Needs scale. E.g. integration with Zn flowsheets
 - Hydro cannot help on slag, creates more leach residue which is a very poor building material
- Hydro towards zero waste: different waste bucket depending on process, limited attention to impurities

Recovery of trace elements

- Pyro: in alloy / via refinery, rest lost to slag attention depends on price
- Hydro: increases complexity, but impurities need outlet

CO₂ emissions reduction

- Pyro: Reduction with hydrogen/biomass? Make green H₂ or electrolyze Pb instead? Biomass availability?
- Hydro: Direct electrification, reagents footprint

Lithium metallurgy basics

Ellingham diagram: lithium? PbO / $C + O_2 = CO_2 \bigcirc$ 400 400 3 Fe + 02 = 1 Fe 3 O4 A 21n + 02 21n0 B 8 2 C 1 D 2 = 3 C 2 D 3 B 500 500 M 2Mn + 02 = 2Mn0 B × 3V+02=3V203 © М M 600 600 Si * O2 SiO2 B 700 700 (D) ²/₅ Nb₂O₅ ²/₅Ta₂O₅ 800 800 ₁ ${}_{\frac{3}{5}}^{2}B_{2}O_{3}$ 900 1 900 2NB+02=2NBO © U+ 02 = "U02" A 1000¹ 1000 Line CeO₂ Element or Oxide code lower oxide 2BaO Condensed Condensed ZrO₂

Li pyro: Ellingham

- Li very low in the diagram
 - Will be one of the last to be reduced not possible using C or even Al
 - In practice, will not (+does not need to) be reduced
 - Making metal not necessary, active materials contain Li as oxide/salt
 - Except for Li metal batteries molten salt reduction, not in scope today
- Compare to Pb:
 - Ca/Si/Mg/Al oxides, fluxes, etc. will be in the slag
- With pyro on LIB's:
 - Rather noble elements (Cu, Ni...) can be recovered in alloy
 - Li will be part of the slag, along with any common slag forming impurities
 - => Additional steps needed to recover it

Li hydro: E-pH diagram

- Li very soluble, in several salts
- Bound/intercalated in an oxide depending on other elements present (LFP, NMC...)
 - To be reversed for recycling
- No Li metal in aqueous system either

Primary vs. secondary Li flowsheets

Primary

- Raw material: concentrates
 - Well-known composition
 - Mine dependent
- Chemistry: Rocks (oxides) and brines (salt)
 - Rocks need treatment to make Li soluble
 - Li in brines needs separation from other salts

Secondary

- Batteries / black mass
 - Different chemistries
 - Evolution as chemistry evolves
 - Organics
- Li in lithiated oxides / graphite
 - Li strongly bound in active material
 - Pretreatment and leaching to bring into solution

Li₂CO₃ production from hard rock concentrates

- Calcining at 900-1100°C
 - Transform spodumene LiAl(SiO₃)₂ crystal structure
- Autoclave leaching with Na₂CO₃
 - Alternatively roasting 200-300°C +water leaching
- Impurity removal from leach solution
- Carbonization (LiHCO₃)
- Crystallization of Li₂CO₃
 - Next step can be conversion to LiOH with Ca(OH)₂
 - Alternative route for LiOH is through Li₂SO₄
 with H₂SO₄ then NaOH

Li₂CO₃ production from brines

https://stockhead.com.au/

Li-ion battery recycling

- ... is not only about Li!
- General approaches
 - Mechanical separation
 - Basic materials (plastic, Fe, Al,...)
 - + black mass
 - Possibly split black mass in components (direct physical recycling)
 - Pyrometallurgy
 - Recover Cu/Co/Ni/Fe in alloy
 - Some options to recover Li...
 - Hydrometallurgy
 - Leaching of black mass (or pyro alloy)
 - Precipitation of active materials (CAM)

https://www.frontiersin.org/articles/10.3389/fchem.2020.578044/full

LIB recycling

- 2020 Sommerville paper gives collection of (Western) techniques
- Their assessment:
 - No industrial standard process yet
 - Try to recover more than only the most valuable materials
 - Automation of disassembly needed
 - Mechanical separation and direct reuse favourable
- Our assessment:
 - Lots of evolution since then
 - Combine techniques for what they are good at
 - Recoveries improving and more focus on other materials (Li, graphite...)

Li recycling

- Classical pyro approach:
 - Smelt batteries now rather black mass
 - Retrieve metals in an alloy
 - Reactive Li reports to the slag, diluted

Classical hydro: leach all, precipitate base metals, recover Li at the end

Black mass

Pyro optimization: fume Li to flue dust (less volume with higher Li concentration)
 e.g. by addition of CaCl₂

Li recycling

- Lithium removal first: make Li more soluble and leach it out, several methods:
 - Reductive (carbonation) roasting (also: pyrolysis)
 - Hydrogen reduction
 - Sulfation roasting
 - Leaching directly (oxidative, e.g. for LFP, or reductive) but easier to deal with organic content with at least one thermal treatment step
- Why is "lithium first" on the rise?
 - Higher yields: focused conditions for Li removal, no losses in subsequent steps
 - Li now a relevant part of the value, esp. for LFP
 - Combines well with pyro (avoiding low yields)
 - ... but essentially gives the freedom to choose the next steps as fit, depending on e.g. available volume
 - Pyro requiring higher volume
 - Hydro as transition / for smaller markets

Next frontiers

- Zero waste reagent recovery
 - Salt splitting: Na₂SO₄ to NaOH and H₂SO₄
 - May become required as salt discharge is not allowed
 - Technically possible, but challenging economics

- Total recycling recovery of more than metals, back to battery materials
 - Electrolyte
 - Graphite

Recycling as a geopolitical security strategy

Some conclusions

Lead flowsheets

- Sulfur is the key
- Robust established flowsheets, no revolution needed but innovation welcome
- Local recycling, not gigarecyclers
- Can we get better at separation? What about separators/heavy fraction?
- Can we include hydro smartly?

Lithium flowsheets:

- Full battery focus. Li recovery now at high levels, despite initial focus on other components
- Discharging, disassembly, extensive comminution and sorting
- Has evolved from open debate to mix of big players and startups with proprietary know-how
- Collection network, scale up and more centralized industrialization may have overtaken Pb
- Two very different metals need different approach, but industries can interact and learn

